Characterizing cell adhesion by using micropipette aspiration.

نویسندگان

  • Brenna Hogan
  • Avin Babataheri
  • Yongyun Hwang
  • Abdul I Barakat
  • Julien Husson
چکیده

We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying cell-adhesion strength with micropipette manipulation: principle and application.

Quantifying cell-adhesion strength is of great importance in biology and medicine. Cell-adhesion strength can be characterized by separating two adherent cells and determining the force required to do so, or by measuring the lifetime of a receptor-ligand bond that mediates cell adhesion. To this end, several micropipette-based experimental techniques that operate at both cellular and molecular ...

متن کامل

Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy.

We propose a model for membrane-cortex adhesion that couples membrane deformations, hydrodynamics, and kinetics of membrane-cortex ligands. In its simplest form, the model gives explicit predictions for the critical pressure for membrane detachment and for the value of adhesion energy. We show that these quantities exhibit a significant dependence on the active acto-myosin stresses. The model p...

متن کامل

The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells.

Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by ...

متن کامل

Dynamic force spectroscopy to probe adhesion strength of living cells.

We studied the mechanical strength of the adhesion of living cells to model membranes. The latter contained a RGD lipopeptide which is a high affinity binding site for a cell adhesion molecule (integrin alpha(V)beta(3)). Cells adhered specifically to the vesicles. We used micropipette aspiration for breaking this adhesion with well defined forces. Systematic variation of the rate of force appli...

متن کامل

Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration.

Bleb-based cell motility proceeds by the successive inflation and retraction of large spherical membrane protrusions ("blebs") coupled with substrate adhesion. In addition to their role in motility, cellular blebs constitute a remarkable illustration of the dynamical interactions between the cytoskeletal cortex and the plasma membrane. Here we study the bleb-based motions of Entamoeba histolyti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 109 2  شماره 

صفحات  -

تاریخ انتشار 2015